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Jets in bubbles
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Abstract. Different types of jet formation in collapsing cavitation and gas bubbles near a rigid boundary are ex-
plored by using an advanced boundary-integral technique which incorporates the transition from simply connected
to multiply connected bubbles (i.e. toroidal bubbles). Physical interpretation and understanding is facilitated by the
calculation of the evolving bubble shape, fluid velocities and pressures, the partitioning of kinetic, potential and
gravitational energies, the circulation around the bubble and the Kelvin impulse associated with both the complete
bubble and the high-speed liquid jet. In the most vigorous jet formation examples considered it is found that upto
31% of the total energy and upto 53% of the Kelvin impulse is associated with the jet. Practical implications of
this study beyond the usual damage mechanisms imply that the level of bubble compression will be signiffcantly
lessened leading to lower bubble gas temperatures and thence the corresponding change in the chemical reactivity
of its contents or the emission of light. Calculations also suggest interesting phenomena around a standoff distance
of 1·2 maximum bubble radii where the circulation around the bubble and the kinetic energy of the jet appear to
have maximum values. The practical implications and experimental confirmation of this are yet to be explored.
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1. An overview

Over the past few decades, several computational techniques have been employed to calculate
the motion of bubbles, cavities and drops for a wide range of physical problems. Many of the
more violent or rapid motions may be effectively reduced to inviscid potential problems which
are valid for much of the lifetime of the respective bodies: thus requiring solution of Laplace’s
equation in the fluid domain. In the current work, we choose to use a direct boundary-integral
method based on Green’s identity, which allows us to formulate the problem entirely on the
boundaries of the fluid domain, effectively reducing the number of dimensions of the problem
by one.

In ascertaining the motion of bubbles in close proximity to boundaries, the consideration
of non-spherical effects is paramount in obtaining an understanding of the physical problem.
However, further from the boundary spherical bubble models have been shown to be a good
indicator of gross behaviour having been employed since the inception of work in this field by
Rayleigh [1]. Although we are now fully aware of the non-spherical behaviour of bubbles in
many physical situations, the assumption of a spherical bubble allows researchers to readily
introduce the consideration of many physical phenomena into a simple equation of motion.
Historically these include effects due to: the presence of nearby boundaries [2], surface tension
and viscosity, or weakly compressible effects [3, 4]. More recently, aspects such as the intro-
duction of heat and mass transfer effects were considered [5, 6]. Such models are mentioned
as many of the effects may be included (albeit in some cases with a high degree of difficulty)
within boundary-integral schemes (e.g. heat and mass transfer [7]).
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The first application of the boundary-integral method to the field of bubble dynamics may
be attributed to Lenoir [8] who considers the collapse of an initially spherical bubble near to
both rigid and free boundaries. A more successful consideration of the collapse of a spherical
void near a rigid boundary may be found in the conference paper by [9], though the necessary
brevity of the paper limits the number of cases considered. The main drawback to these early
studies is that the bubble is assumed to collapse from an initially spherical maximum volume,
and as such, no consideration is given to the expansion phase of the bubble. Despite the proven,
stable nature of the expansion phase [10] it is essential to calculate the expansion phase of the
bubble where any source of asymmetry is present in the flow domain, since any perturbation
from a spherical state during expansion may have great influence during the unstable collapse
phase. This reasoning holds true even for bubbles formed several maximum radii from the
boundary where bubble-surface geometry may appear spherical, yet is often not, with further
non-spherical attributes becoming apparent if consideration is given to surface velocities or
quantities in the surrounding fluid.

The first study which considers both the growth and collapse of a bubble may be attributed
to Taib [11]. In this work, the bubble is assumed to grow from a small, initially spherical
shape upto maximum volume, following which, collapse ensues and the motion is followed
(in most cases) through to the time of liquid-jet impact. Despite the primitive piecewise-linear
representation of the surface geometry and potential used in this work and subsequent papers
[12, 13], these works have provided benchmark calculations for the motion of vapour bubbles
near to rigid and free boundaries for a number of years. The only shortcomings due to the
scheme employed by Taib are the omission in these studies of calculations very close to an
infinite free surface, when very narrow liquid jets are observed to form; and in several cases
near to the null-impulse state where unusual geometries arise and the calculations break down.

The implementation of the direct boundary integral method was later improved by Kucera
[14, 15]. In this scheme, the surface geometry and potential thereon are described by a series
of cubic-spline elements fitted through collocation points on the interface. Moreover, Best
extended the boundary-integral formulation to examine the toroidal phase of an underwater
explosion bubble which develops following liquid-jet impact [14]. This is achieved via the
addition of a cut in the fluid domain to retain the singly connected topology post impact. In
this early work, the cut is evolved in time as a material surface. This was later improved by
Best who introduced a ‘dynamic cut relocation algorithm’ [16], in which the cut is taken to be
a simple disk, any deformation of which may be ignored as it may then be arbitrarily remapped
at each time step to this simple geometry. By careful labelling of surface nodes, the cut may
be kept entirely within the column of fluid which threads the bubble; this being necessary in
order that the cut does not cross the surface of the bubble. Furthermore, without the need to
track the geometry of the cut, large computational savings are made.

The numerical scheme used in the current work is based on the techniques developed by
Kucera and used with great success in [14, 15]. Also employed is the dynamic cut relocation
algorithm due to [16] in order to permit the calculation of the toroidal phase of motion in close
proximity to boundaries. In this study, we make further refinements, thus improving com-
putational accuracy. A number of novel techniques are also developed to calculate physical
quantities associated with the bubble, liquid jet and surrounding fluid.
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2. Boundary-integral formulation

Herein we assume an inviscid and incompressible flow; thus, there exists some velocity po-
tential, φ, for the flow domain around the bubble which satisfies Laplace’s equation

∇2φ = 0. (1)

One of the well-known integral formulations of the solution to Laplace’s equation may be
written

c(p)φ(p) =
∫

∂�

(
∂φ(q)

∂n
G(p, q) − φ(q)

∂G(p, q)

∂n

)
dS, (2)

where, for smooth boundaries, c(p) is taken to be 1 if p ∈ �\∂� and 1/2 if p ∈ ∂�. Here �

is used to represent the flow domain and ∂�, its boundaries. The Green’s function G(p, q) is
given by

G(p, q) = 1

4π |p − q| + 1

4π |p − q′| , (3)

where q′ is the image of the point q in the rigid boundary. The use of this image term removes
the requirement to integrate over the infinite extent of the rigid boundary. Thus the required
integration over the boundaries of the flow domain reduces to a surface integral over the
surface of the bubble which we henceforth denote as S.

We move on from the well-established formulation for simply connected bubbles to con-
sider the more complex formulation for toroidal bubbles in the next section.

3. The toroidal bubble: Reformulation of the integral equation

In this section, we consider the evolution of the bubble into the toroidal phase of motion.
In doing this, the flow domain � changes topology from a singly connected to a doubly
connected geometry via the liquid-jet impact. It is accepted that the fluid mechanics of jet
impact are indeed complex, with effects due to liquid compressibility, viscosity and surface
tension expected to play a rôle. However in order to gain some appreciation of the bubble
motion, it is necessary we neglect these factors and seek a solution to Laplace’s equation in
the doubly connected flow domain.

In order to do this, we outline the work of Best [14] who considers the form of the
boundary-integral equation immediately prior to and after liquid jet impact. We shall denote
the surface over which jet impact takes place as T and denote the remainder of the bubble
surface as S. Further, we shall denote the upper and lower surfaces of T by T+ and T− respect-
ively, such that T ≡ T+ ∪ T−. An outward unit normal is defined over the two surfaces and is
represented by n±, where the subscript ± denotes quantities evaluated on T±, respectively. We
also introduce here the superscripts b and a which are used to signify a quantity immediately
before and after jet impact. A schematic of the geometry can be found in Figure 1. We choose
some point t ∈ T and write

�φb(t) = φb
+(t) − φb

−(t), (4)

which in general is non-zero. Physically the change from a singly connected to doubly con-
nected topology gives rise to a circulation, which we denote by �. This is deemed necessary in
order that the Kelvin impulse is conserved. This circulation is obtained by integrating around
any closed contour, C, to give
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Figure 1. Schematic showing the transition to a toroidal bubble geometry: (a) an idealised bubble prior to jet
impact with the appropriate potentials and normal velocities on T+ and T−; and (b) an idealised bubble following
jet impact, again with the appropriate potentials and normal velocities on the cut.

� =
∮

C

u · ds = [φ]C, (5)

where the notation [·] is used to signify a jump in potential. Immediately following impact,
we know that

φa
±(t) − φb

±(t) = −�±/ρ, (6)

on T±, respectively, where �± are the pressure impulses defined as �± = ∫
p(t±)dt , an

integral over the impact duration. Since T± experience a common pressure during impact, so
the pressure impulse is constant, i.e. �+ = �−, and hence

φa
+(t) − φa

−(t) = φb
+(t) − φb

−(t). (7)

Thus the jump in potential persists following impact and experiences no change in value. This
may be written as

�φa(t) = �φb(t) = �φ(t). (8)

So the circulation � is dependent on the point t, at which we begin and end our closed curve.
For �φ(t) non-uniform along the cut, the flow domain will be rotational. Only if �φ(t) is
uniform will we have irrotational flow with a constant circulation �φ on any circuit. Reference
[17] discusses the the nature of jet impact for high-velocity impacts for large Weber numbers,
indicating a transition from vortex sheet formation to splashing, this latter phenomenon being
particularly apparent in the following computations and in the relevant experimental studies
reported in [18], one of which is illustrated in Figure 18.
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During impact, the pressure inside the bubble, pb is constant and so over the remainder of
the bubble’s surface S, the pressure impulse at any given point is

�S =
∫

p dt = pbδt, (9)

where δt is the duration of the impact. If we now consider the duration of the impact δt → 0
whilst p remains finite, then the pressure impulse, �S = 0. And hence we reason that during
impact, there is no change in the potential on the remainder of the bubble surface S.

Hence we may formulate a boundary-integral equation for the toroidal phase of the bubble
motion as

c(p)φ(p) =
∫

S

(
∂φ(q)

∂n
G(p, q) − φ(q)

∂G(p, q)

∂n

)
dS − �φ

∫
T

∂G(p, t)
∂n+

dS, (10)

with c(p) as defined following (2), provided p /∈ T . We note the additional term in (10)
compared to (2) now requires integration over the impact surface, T .

In the following section, we outline the numerical scheme used to solve Equations (2) and
(10) and advance the flow in time

4. Modelling the jet-formation phenomena

The method of solution may be summarised as follows. At some time t , both the shape of
the bubble and the potential over its surface are presumed to be known, so Equation (2) (or,
equivalently, Equation (10)) is a Fredholm integral equation of the first kind for the unknown
normal velocity ∂φ/∂n. Its solution yields the normal velocity directly and the r- and z-
components of velocity may be immediately resolved. Knowledge of the surface velocity
allows us to advance both the surface geometry and potential so it is known at some time
t + δt shortly afterwards. Repetitions of this scheme allows us to advance the flow in time.

The surface geometry is advanced using the kinematic boundary condition, which for a
given point pi ∈ S is

Dpi

Dt
= ui, (11)

where ui is the fluid velocity at the point pi . In a similar fashion, the rate of change of the
velocity potential on the bubble surface is simply given by the potential’s material derivative.
By substituting for ∂φi/∂t from Bernoulli’s equation in this, we obtain the dimensionless
dynamic boundary condition

Dφi

Dt
= 1

2
|ui|2 + 1 − α

(
V0

V

)κ

− δ2(zi − γ ), (12)

where a subscript i denotes that quantity evaluated at the point pi . For a point on the surface
of the bubble, we know both ui from the solution of (2) and may readily calculate the bubble
volume V . Hence Equations (11) and (12) may be integrated numerically to yield a new
surface geometry and potential thereon.

In the above, lengths have been scaled with respect to the maximum bubble radius R∗
m, time

with respect to R∗
m

√
ρ∗/�p∗ and the pressure p∗ by (p∗ −p∗

v)/�p∗, where �p∗ = p∗∞ − p∗
v;

p∗∞ and p∗
v being the hydrostatic and vapour pressures of the liquid, respectively. Where a star

denotes a dimensional quantity. This leads to the following dimensionless parameters:
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Figure 2. Schematic showing a bubble near a rigid boundary. The bubble is generated at a dimensionless distance
γ from the boundary.

α = p∗
0

�p∗ , γ = h∗

R∗
m

, δ2 = ρ∗g∗R∗
m

�p∗ . (13)

Here α is the compression ratio and is a measure of the initial high pressure, p∗
0 within the

bubble over the hydrostatic pressure at the inception depth. γ is the dimensionless standoff
distance, the initial distance of the bubble centroid from the rigid boundary scaled with respect
to maximum bubble radius; see Figure 2. Finally, δ is the buoyancy parameter and is a measure
of how much the bubble rises under the influence of gravity. For the cavitation bubbles we
consider henceforth, δ = 0. Finally, we note that κ is the ratio of specific heats.

In order to solve Equation (2) in an axisymmetric geometry (∂/∂θ = 0), we employ a
collocation method, choosing a set of n (typically 50) nodes: N 1,N2, . . . ,Nn, on the surface
of the half-bubble (θ = 0, r � 0). We denote the cylindrical coordinates of the ith node by
(ri, zi). We represent the surface of the bubble using a set of cubic splines, which are fitted
through the node points to produce n − 1 surface elements, initially of equal arclength. The
variation of the potential on the surface is also fitted as a cubic spline, whilst the unknown
normal velocity, ∂φ/∂n is assumed to vary linearly between two nodes with respect to the
arclength. Hence we may form a system of linear equations, the direct solution of which
yields the surface normal velocity.

4.1. TOROIDAL-BUBBLE CALCULATIONS

Here we describe the changes to the numerical scheme of the previous section in order to
allow for the transition to a doubly connected fluid domain. In our idealised model, the impact
occurs at a single point, across which a jump in the potential of �φ occurs. Since the impact
occurs at a point, �φ is uniform and hence no vortex sheet is formed. Initially the cut is a
point, but through advancement of the flow, its geometry changes. Reference [16] shows the
cut to be entirely arbitrary and it is hence remapped to a simple disk at each time step, resulting
in huge computational savings. Physically, we would expect a loss of kinetic energy due to
impact, manifesting itself as heat or acoustic radiation. However, for our idealised model with
the restriction to a point impact, energy is conserved.

Up until the moment of impact, the scheme outlined above yields the geometry, potential
and normal velocity on the boundaries, ∂� of our flow domain. Computationally, impact
takes place when nodes N1 and Nn (which lie on the axis of symmetry) occur within some
predetermined distance of each other. This yields the circulation of the successive flow as

�φ = φn − φ1. (14)
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We recall over S (nodes N2,N3, . . . ,Nn−1) the potential is unchanged, allowing evaluation
of the fluid velocity as before.

Although we initially know the position of the cut, after this initial step we have no idea
of where this meets the surface of the bubble. It is reasonable to assume that the regions
of high curvature formed lead to the immediate smoothing of the bubble surface through
the action of surface tension. Hence we remove nodes N1 and Nn from their position on
the axis of symmetry and fit a smooth curve through the remaining nodes. These nodes are
then introduced back into the surface of the bubble midway between nodes Nn−1 and N2.
This approach is given some credibility due to the spatially regular redistribution of nodes
throughout preceding time steps. Hence the cut is taken as a disk of radius r1 ≡ rn, cutting the
axis of symmetry at z1 ≡ zn, where the subscripts denote node number.

Having detailed the transitional scheme, we are now in a position to discuss the imple-
mentation of the boundary-integral method to solve Equation (10). This technique is almost
identical to that discussed earlier, except for the appearance of the final term in this equation,
which requires us to integrate over the cut. We note here that the coincident nodes N1 and Nn

lie in S ∪ T and so the normal there is undefined; hence neither is ∂φ/∂n. For this reason,
we choose not to collocate Equation (10) there, but do so only for the remaining n − 2 nodes
N2,N3, . . . ,Nn−1. We do, however, require knowledge of the position of these nodes as it
defines the spatial location at which φ is discontinuous. In order that we may track this point,
it is essential the normal velocity there is known. This is evaluated by considering the interval
between Nn−1 and N2 as a single segment, along which the normal velocity is necessarily
taken to vary linearly with respect to arclength as with the other surface elements.

4.2. DYNAMIC CUT RELOCATION

Here we detail the dynamic cut relocation algorithm due to Best [16]. This removes the need
to follow the cut as a material surface as was previously done [14] by arbitrarily remapping
the cut to a simple disc following each time step. In doing this, however, it becomes necessary
to keep the point at which the cut meets the surface of the bubble within the column of liquid
which threads the bubble. We take t to denote the point at which the cut meets the surface
of the bubble prior to relocation and let t′ denote the new position of the cut. We may then
redefine the potential throughout the flow domain via the equation

φ′(p) = φ(t′) +
∫ p

t′
u · ds, (15)

where a prime denotes a new quantity and ds is a line element taken over any curve in the
fluid connecting t′ with p which does not cross the newly relocated cut, T ′. If the point p lies
outside the region bounded by S, T and T ′, then the potential at p remains the same, that is

φ′(p) = φ(t′) + [φ(p) − φ(t′)] = φ(p). (16)

However, if p lies inside this bounded region, the redefined potential is given by

φ′(p) = φ(t′) + [φ(p) − φ(t′) + �φ] = φ(p) + �φ, (17)

and so the value of the potential there has changed by �φ.
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4.3. SMOOTHING TECHNIQUES

In common with previous work in this field, during evolution of the flow, a high-frequency
saw-tooth instability is found to occur. This is purely a facet of the numerical scheme and has
been reduced through the implementation of high-order polynomial approximations to the el-
liptic integrals which are necessarily employed. These remove the requirement for smoothing
where surface curvature is not too high.

In order to eliminate these instabilities, we choose to employ the method used by [19]
which is based on a diffusion-like fourth-order PDE

∂f

∂t
= −λ

∂4f

∂ξ 4
, (18)

which in effect damps higher-order modes, whilst leaving lower modes virtually unchanged.
Here f is the function to be smoothed, ξ is arclength and λ is a ‘diffusive’ constant. Due to the
occurrence of a diffusion parameter, this methods offers a variable degree of damping (beyond
the frequency with which the smoothing is applied), so for bubbles over a certain distance from
the boundary where the instabilities grow more slowly, a lesser degree of smoothing may be
applied, thus improving accuracy.

In practice, we make finite-difference approximations to Equation (18) so that on a regu-
larly spaced grid, the smoothed quantity f̄j at node Nj is given by the five point formula

f̄j = fj − D(fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2). (19)

We note that the choice of D = 1/16 recovers the often used smoothing formula due to [20].
In practice we are able to adequately smooth the bubbles with a choice of D < 1/16 and for
bubbles at a distance from the boundary, a choice of D = 0·01 is fine. For further details on
the choice of this method and the transition between Equations (18) and (19) see [21].

5. The calculation of physical quantities

In order that we may better understand the behaviour of the fluid flow around a bubble as
it evolves in time, it is useful to calculate a number of physical quantities associated with
the motion. Some, such as the internal pressure and volume of the bubble, are required in
order to update the potential so calculations may proceed. Others, such as the centroid, Kelvin
impulse and the partitioning of kinetic and potential energies, yield further insight into the
fluid flow. Furthermore, calculating quantities associated with the liquid jet may further assist
in the understanding of the non-spherical behaviour of the bubble.

Volume and pressure: The calculation of the volume requires integration to be performed
over a number of volume elements, which are given in cylindrical polar coordinates by dV =
r dr dθ dz. The integrations with respect to r and θ may be performed analytically and the
variable of integration changed to ξ , the arclength, the integration with respect to which is
carried out numerically using Gaussian quadrature.

Once we have the volume of the bubble, this yields directly the pressure in the bubble as

p∗ = p∗
v + p∗

0

(
V ∗

0

V ∗

)κ

, (20)

where p∗
v is the partial pressure due to non-condensible liquid vapour and p∗

0 is the initial
partial pressure due to an adiabatic gas within the bubble. In the case of a vapour bubble, this
is zero, and hence the pressure within the bubble is constant.
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Centroid: Due to the axisymmetric nature of the current work, the centroid will lie on the
axis of symmetry, with the z-coordinate being given by

z∗
c = 1

V ∗

∫
V ∗

z∗ dV ∗. (21)

Kelvin impulse: As noted in [22], the Kelvin impulse “. . .associated with a moving bubble
presents much the same intuitive physical picture as the momentum of a rigid projectile in free
space, and hence the feasibility of impact effects in the process of cavitation damage is imme-
diately appreciated.” Physically, the Kelvin impulse is a global measure of fluid momentum,
and may be thought of as an instantaneous wrench which may be applied to the fluid in order
to generate that motion from rest. For a more detailed discussion of the Kelvin impulse in
relation to spherical bubble dynamics [23] and the references contained therein.

Due to the axisymmetric nature of our system, only the z-component is of interest, which
is given by

I ∗
z = −ρ∗ez ·

∫
S

φ∗n dS∗, (22)

where ez is a unit vector in the z-direction. We note the minus sign is due to the fact that the
surface normal, n is directed outward with respect to the fluid; and so into the bubble.

In order to calculate the Kelvin impulse of a toroidal bubble, it is necessary to modify the
above, so that integration is also performed across the cut. Hence

∫
S


→ ∫
S∪T

.

Kinetic energy: The calculation of energies associated with the motion of the bubble and
surrounding fluid helps to provide further insight into the physical problems we consider. An
expression for the kinetic energy due to the motion of the bubble is given by

E∗
k = ρ∗

2

∫
S

φ∗ ∂φ∗

∂n
dS∗. (23)

We note that in calculating the Kelvin impulse of a toroidal bubble, we are able to utilise the
constant nature of the potential across the cut. However, it is obvious the normal velocity
on the cut is not constant, and hence to calculate the kinetic energy of a toroidal bubble
would require calculation of the normal velocity thereon. Due to the difficulty in doing this,
a better estimate may be obtained by subtracting calculated values for the potential energy of
compression from a reference energy.

We note that since energy is conserved in our model, the sum of the kinetic and potential
energies of the system is constant and equals the initial energy of the system; except any
energy losses due to errors in the numerical scheme. In the scheme employed herein, this may
be shown to be a fraction of a percent [21].

Potential energy1 : Here potential energy refers to the work done in changing the bubble’s
volume from its initial size, V0 to some volume, V (t); and not the gravitational potential
energy which we omit due to our consideration of non-buoyant bubbles in this paper.2 The
potential energy of the bubble is given by

E∗
p = −

∫ V ∗

V ∗
0

(p∗ − p∗
∞) dV ∗, (24)

where p∗ is the time varying pressure given by (20).
1We note this may be referred to as internal energy by some authors.
2Techniques for the calculation of the gravitational potential energy are given in [21].
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Figure 3. Schematic showing the volume of fluid which we call the jet. This is bounded by SJ , a subset of the
surface of the bubble S and a flat circular lid L placed atop the bubble. The point lS ∈ SJ ∩ L.

5.1. QUANTITIES CONCERNING THE LIQUID JET

Here we outline the techniques required in order to calculate the Kelvin impulse and kinetic
energy for the volume of fluid which constitutes the liquid jet. For the purposes of our calcu-
lations, we consider the liquid jet to be the volume of fluid which may be bounded by some
part of the surface of the bubble, SJ ⊂ S and a circular lid, L placed on top of, or beneath, the
bubble. See the schematic in Figure 3.

Kelvin impulse of the liquid jet: In calculating the Kelvin impulse of the liquid jet, we
obtain an idea of the instantaneous wrench which would be required to set the liquid jet in
motion from rest. We introduce at this stage the integral required to calculate the Kelvin
impulse of the jet, which is

I ∗
z = −ρ∗ez ·

∫
SJ ∪L

φ∗n dS, (25)

which has the requirement that we integrate over SJ ⊂ S, which may be performed as for the
Kelvin impulse of the bubble (with a little care where integration over a partial segment of
the bubble surface is necessary), and across the circular lid, L. This requires the calculation
of φ at points l ∈ L not on the surface of the bubble, but within the body of fluid surrounding
the bubble. In order to calculate φ(l) at a point not too close to S, we appeal to Equation (2)
where c(p) is taken to be unity since p ≡ l ∈ L ∩ S ′ where all values on the right-hand side
are known a priori.

However, some of the points of L do lie close to S. Indeed, during the earliest moments
of jet formation, all points l ∈ L lie close to S, whence the singular nature of the Green’s
function leads to erroneous values for the calculated potential. Instead, we concentrate on
calculating the Kelvin impulse of the jet at some time later once a more obvious jet may be
observed; typically 30 iterations after the first occurrence of a concave portion of S. At this and
subsequent times, much of L lies sufficiently far from S that the potential may be calculated
accurately. We also know the potential at the point lS ∈ SJ ∩ L. Crucially, we also know the
derivative of φ along L, which is ∂φ/∂r; this is simply the r-component of surface velocity
at lS . Using our values for φ on the central portion of L and the value of φ and its derivative
at lS , we may fit a series of cubic-spline elements through the known data. Values for φ may
then be calculated at points on L, close to S, where required. Hence the integral along L may
be calculated using Gaussian quadrature.
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Figure 4. Potential and normal velocity across the lid L at the 30th time step following initial jet formation for
bubble motion characterised by α = 500, γ = 1·1 and κ = 1·4. Dots denote points at which data is required for the
integration by Gaussian quadrature, with calculated values to the left of the vertical dotted line, and interpolated
values to the right. Data at the point lS is denoted by an open circle.

Figure 4 shows an example of the variation in potential and normal velocity across L at
the 30th time step following the initial jet formation in a typical cavitation bubble. We note
that data is calculated explicitly using the boundary-integral method at twelve points: the first
on the axis of symmetry, the last at lS , the remaining ten at the ten abscissas nearest the
axis of symmetry which are required for numerical integration using sixteen point Gaussian
quadrature. Splines are fitted to this calculated data and the further six values required for
quadrature at the end nearest lS calculated by interpolation. We note the non-constant nature
of these quantities which shows these techniques to be necessary.

Kinetic energy of the liquid jet: The techniques for calculating the Kelvin impulse of the
liquid jet detailed above are readily extended to calculate the kinetic energy therein, and is
given by

E∗
k = ρ∗

2

∫
SJ ∪L

φ∗ ∂φ∗

∂n
dS. (26)

We note the need to also calculate the normal velocity, ∂φ/∂n on L. Again, values for φ and
∂φ/∂n are calculated on the central portion of L and at the point lS which also lies on the
surface of the bubble. Despite the fact that we do not know the derivative of ∂φ/∂n at lS ,
splines may still be fitted to the data using not-a-knot end conditions at the outer end of L,
whilst retaining the prescribed derivative ∂φ/∂r = 0 on the axis of symmetry. Even with
the use of the not-a-knot condition, we are confident that the splines adequately capture the
behaviour of ∂φ/∂n along L, since any errors are readily noticeable in the final value for the
kinetic energy of the jet and may be removed after inspection.

5.2. INSTANTANEOUS PRESSURE AND VELOCITY FIELDS

One aspect in which our numerical calculations offer physical insight beyond that afforded
our experimental colleagues is in the calculation of quantities throughout the flow domain.
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Whilst it is possible to record information at the boundaries, such as the pressures thereon
[24], it is not easily possible to record this data within the body of the fluid. Especially since
regions of interest are often in close proximity to the bubble, where recording devices may
have a significant influence on the motion of the bubble. Furthermore, where information is
recorded at the boundary, the range of cases considered may be limited due to damage caused
to, for example, pressure transducers by the violent collapse of the bubble.

Velocity-field calculations: Here we note the r- and z-components of fluid velocity are
given by ∂φ/∂r and ∂φ/∂z, respectively. We choose to calculate these derivatives using a
five-point formula. Furthermore, since the fluid velocities are required for the calculation of
the fluid pressure, the spatial steps between these five points are taken to be the average of the
temporal steps between the preceeding two and following two time steps.

Finally, we note that, in order that erroneous values are not calculated either inside or close
to the surface of the bubble, a narrow region (typically of non-dimensional width 0·01) is
created around the bubble. We then omit points through the calculation of a winding number.

Pressure-field calculations: In order to calculate the pressure throughout the body of the
fluid, we use the dimensionless Bernoulli pressure equation

p = 1 − ∂φ

∂t
− 1

2
|∇φ|2 − α

(
V0

V

)κ

− δ2(z − γ ), (27)

which requires the fluid velocity at the point in question (as calculated above) and also the
time derivative of the potential, which is again calculated using a five-point formula.

6. Numerical calculations: Vapour and gas bubbles near a rigid boundary

We briefly consider the case of a vapour bubble close to a rigid boundary before studying the
motion of bubbles with a gas–vapour content, again near to a rigid boundary. For this latter
problem we thoroughly examine the physical quantities associated with the motion in order
to gain further physical insight. Finally, we compare our calculations against a recent exper-
imental study wherein the motion of the bubble is recorded using high-speed photography at
an elevated angle above a rigid boundary.

We begin the discussion of our results concerning bubble motion near boundaries by
considering one example of the motion of a vapour bubble near a rigid boundary to be com-
plemented by studies of the motion of a bubble with a mixed vapour and gas content near to a
rigid boundary. The inclusion of a gaseous content in the bubble allows a much more detailed
examination of the physical quantities associated with motion to be undertaken.

Figure 5 shows the motion of a vapour bubble generated at a standoff distance, γ = 1
from a rigid boundary. In Figure 5 we present half-rendered bubble shapes for both the pre-
toroidal and toroidal phases of motion. Frames 1 and 2 show the bubble at the start of our
calculations and at maximum volume, respectively. We note the flattening of the underside of
the bubble at maximum volume due to the close proximity of the boundary. Frames 3–6 show
the collapse phase up until the time of liquid-jet impact. Due to the Bjerknes force of attraction,
both the migration of the centroid and the direction of the liquid jet are directed towards the
boundary. Following jet impact (Frame 7 onwards), the resulting circulation channels fluid
through the centre of the bubble. This fluid then impacts against the boundary and is forced
outward along it. Due to the continued collapse of the bubble, fluid continues to rush in from
the far-field. Where the opposing flows meet, a ‘splash’ of liquid is thrown up inside the
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Figure 5. Half-rendered bubble shapes showing the motion of a vapour bubble near a rigid boundary with γ = 1·0.
Horizontal and vertical axes are: r � 1·25, 0 � z � 2·5, hence the rigid boundary is visible at the bottom of each
frame. Dimensionless times are 0·0015, 1·0536, 1·7747, 1·9565, 2·0488, 2·0850, 2·0995, 2·1071, 2·1212, 2·1387,
2·1478 and 2·1518, respectively.

bubble. Further consideration is given to the splash phenomenon in the paper by [17]. Figure 6
contains velocity vectors and pressure contours within the body of the fluid at four instants
during the motion, in which the region of high pressure which forms above the bubble and
drives the flow may be seen. Following jet impact, a region of higher pressure forms on the
rigid boundary, which then continues to spread outwards as the flow evolves. The circulation
around the bubble may be observed in Frames 3 and 4.

Henceforth we present a much fuller discussion of the motion of a cavitation bubble con-
taining both non-condensible liquid vapour and gas near to a rigid boundary. Although in many
cases a good agreement with experiments may be achieved by simply considering the motion
of a vapour bubble, key features of the motion around minimum volume, where phenomena
are associated with the compression of gas within the bubble, may be lost. In particular, the
speed of the liquid jet during final collapse may be greatly affected. This is of consequence
where bubbles of highly disparate maximum bubble radii, and hence period of oscillation, are
considered.

It is of interest to consider the motion of cavitation bubbles generated over a range of
standoff distances from a rigid boundary; henceforth we primarily consider the compression
ratio α = 100. In order to give an idea of the bubble geometries which develop, we consider
the shape of the bubble at the time of liquid jet impact. Half-rendered bubble shapes for
α = 100, and standoff distances over the range γ = 0·7 − 6·0 are presented in Figure 7.
For standoff distance of γ = 1·0 and below, the bubble is characterised by a wide liquid jet
and flattened underside, which becomes more pronounced as the bubble is initiated closer to
the boundary. As the point of initialisation is moved further from the boundary, the expansion
phase quickly becomes almost spherical in nature as the influence of the boundary lessens.
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Figure 6. Velocity vectors and pressure contours showing the motion of a vapour bubble near a rigid boundary
with γ = 1·0. Times are 1·9628, 2·0802, 2·0958 and 2·1112, respectively.

Furthermore, due to the decrease in the Bjerknes force of attraction, the bubble attains a
progressively smaller volume at the time of jet impact upto a certain standoff distance. Beyond
this critical distance, the bubble reaches minimum volume and begins to re-expand whilst
simply connected. For a further range of γ values, the liquid jet will impact on the opposing
face of the bubble during re-expansion. Then beyond this second critical standoff, jet impact
will not occur, at least during the first oscillation of the bubble. One other feature which may
be regarded as a function of standoff distance is breadth of the liquid jet, which becomes first
proportionally wider, then much thinner as γ is increased.

Corresponding calculations for α = 1000 (not presented) yield very similar bubble shapes
over the range γ = 0·75 − 1·5 indicating the predominant influence on motion in this range
is the boundary and not the internal pressure of the bubble. For larger standoff distances,
the volumes at jet impact are typically smaller and the jets which form are wider than those
observed for α = 100 at a given standoff distance. For corresponding calculations for α =
1000 to results presented in this paper, see [21].

The evolution of the bubble volume upto the time of jet impact for the compression ratio
α = 100 and for a range of standoff distances is shown in Figure 8. We note the afore-
mentioned decrease in bubble volume at the time of jet impact as γ increases. We note the
slight upturn at the end of the curve for γ = 2·5, thus showing that the bubble is starting to
re-expand. At γ = 7·5, the bubble re-expands significantly prior to jet impact.

We consider the motion of the bubble centroid for a number of standoff distances at the
compression ratio α = 100 in Figure 9. For bubbles formed close to the boundary, the expan-
sion phase is characterised by upward motion of the centroid as the bubble expands, displacing
fluid as it does so. As the point of initiation is moved further from the boundary, the bubble
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Figure 7. Half-rendered bubble shapes showing the geometry of a cavitation bubble (α = 100) above a rigid
boundary for a range of standoff distances at the time of jet impact. Horizontal and vertical axes are: (a) through
(i) r � 1·25, 0 � z � 2·5; and (j) through (o) r � 1·25, |z − γ | � 1·25. The black star denotes the point of
initialisation. The boundary is visible at the bottom of the frames (a) through (i).

expands more uniformly about its point of inception; though there is still some movement
away from the boundary for γ = 2·5. During collapse, the Bjerknes force of attraction draws
the bubble towards the boundary, this downward centroid movement increases rapidly as the
jet forms and bubble volume is lost progressively from the top down at a rapid rate. For
bubbles formed at standoff distances greater than about 4·0, there is little centroid movement
until the jet forms, after which there is a very rapid downward movement. We note centroid
motion for γ = 7·5, which remains almost stationary until just prior to minimum volume,
when it experiences rapid downward movement due to the initial formation of the jet. As
previously noted, the bubble starts to re-expand before this jet may impact on the opposing
face of the bubble, though the gentle downward trend in this curve is consistent with the jet
finally impacting. We note such behaviour is observed in buoyant spherical bubble models.

Figure 10 shows our calculations for the Kelvin impulse for a range of standoff distances.
The strong influence of the boundary on the bubbles formed closest to it is characterised by the
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Figure 8. Evolution of the volume of a cavitation
bubble (α = 100) generated above a rigid boundary
for a range of standoff distances up until the time of
jet impact.

Figure 9. Changes in centroid position for the motion
of a cavitation bubble (α = 100) generated above a
rigid boundary for a range of standoff distances up
until the time of jet impact.

Figure 10. The Kelvin impulse associated with the
motion of a cavitation bubble (α = 100) gener-
ated above a rigid boundary for a range of standoff
distances up until the time of jet impact.

Figure 11. The kinetic and potential energies associ-
ated with the motion of a cavitation bubble (α = 100)
generated above a rigid boundary for a range of stan-
doff distances up until the time of jet impact. Total
energy = 2·9615. See Figure 12a for legend.

larger magnitudes of the Kelvin impulse; the negative values indicate a downward influence.
Also of note are the more rapid increases in the impulse during the early expansion phase
and final collapse when the liquid jet forms. Physically, we recall the Kelvin impulse may be
thought of as an instantaneous wrench which would generate the motion from rest and so the
trends noted here are indicative of rapidly changing fluid momentum near the bubble during
early expansion and final collapse.

Figures 11 and 12 shows the kinetic and potential energies associated with the motion of
bubbles formed over a range of γ values for α = 100. In Figure 11 we show the energies cal-
culated up until the time of liquid jet impact. We note the rapid change from potential energy to
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Figure 12. The kinetic and potential energies associated with the motion of a cavitation bubble (α = 100) gen-
erated above a rigid boundary for a range of standoff distances up until the time of jet impact: (a) first minimum
in kinetic energy associated with maximum bubble volume; and (b) second minimum associated with minimum
volume. Total energy = 2·9615.

kinetic energy during the earliest moments of the lifetime of the bubble as the high pressures
within the bubble rapidly accelerate the fluid-gas interface, and the reverse process as the
high surface velocities which develop during collapse re-compress the gas within the bubble.
Figure 12a shows the first minimum in kinetic energy which corresponds to maximum bubble
volume.3 We note for bubbles formed at some distance from the boundary this minimum is
virtually zero, hence the entire surface of the bubble has zero velocity which will only occur
if the bubble behaves spherically. For bubbles formed close to the boundary, this minimum
is non-zero which is indicative of some part of the surface of the bubble being in motion at
all times, so even through the stable expansion phase, the bubble has developed non-spherical
attributes. The non-smooth nature of these curves is due to relatively large time steps which
may be taken when the surface of the bubble is slowly moving. The second minimum in kinetic
energy is shown in Figure 12b, and corresponds to minimum bubble volume. Here we note
the minimum values of the kinetic energy are all non-zero indicating highly non-spherical
behaviour, which should be expected following collapse. Finally we note the increases in
kinetic energy for γ = 2·75 and 3·0, following their respective minima. This further indicates
the bubble is re-expanding.

We now proceed to discuss our calculations concerning the kinetic energy and Kelvin
impulse of the liquid jet. Having just concluded our discussions of the energy of the bubble
as a whole, it is pertinent to discuss the kinetic energy of the jet first. Figure 13 shows the
percentage of the total energy which is manifested as kinetic energy within the liquid jet. We
recall the energy is calculated from a time shortly following jet formation4 (which in Figure 13
occurs in the dimensionless time range 2·02–2·13), up until the time of jet impact (t = 2·05–
2·23). For α = 100 we note the largest percentage of kinetic energy within the jet is 31% at the
time of jet impact and occurs at a standoff distance of γ = 1·2. For bubbles generated closer to
the boundary, this percentage decreases steadily as γ decreases. For bubbles generated further
from the boundary, we have a steady decrease in this percentage. One interesting feature of
3Since energy is conserved, minimum kinetic energy corresponds to maximum potential eneregy. Hence the
pressure within the bubble will be at a minimum, which occurs at maximum volume.
4Typically 30–40 iterations after the appearance of a concave section at the upper pole of the bubble.
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Figure 13. Percentage of the total energy of motion which is manifested as kinetic energy within the liquid jet of a
cavitation bubble (α = 100) for a range of standoff distances from a time shortly following jet formation up until
the time of jet impact. We note the variation in total impulse is shown in Figure 9.

Figure 14. Kinetic energy within the liquid jet at the time of jet impact over a range of standoff distances and for
several compression ratios: (a) dimensionless energy units; and (b) as a percentage of the total energy of motion.

these calculations may be seen by looking at the curve for γ = 4·5 or γ = 5·0 in Figure 13.
Here the kinetic energy in the jet reaches a fixed percentage of the total energy, then becomes
almost constant. This may be attributed to the deceleration of the liquid within the jet due to
compression of gas within the bubble as its volume decreases, then subsequent acceleration of
the remaining surface of the bubble (which does not bound the liquid jet) due to high internal
pressures.

Figure 14 shows the kinetic energy in the liquid jet at the time of jet impact for several
compression ratios and over a range of standoff distances. We see that for compression ratios
from α = 100 to α = 1000, the maximum amount of energy within the jet occurs at a standoff
distance of γ ≈ 1·2. For larger compression ratios, there is a greater amount of energy within
the jet, yet the percentage of the total is approximately equal at around 31%–32%. For γ
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Figure 15. Circulations formed at jet impact over a
range of standoff distances and for several compres-
sion ratios.

Figure 16. Percentage of the instantaneous total
Kelvin impulse of a cavitation bubble (α = 100)
within the liquid jet for a range of standoff distances
from a time shortly following jet formation up until
the time of jet impact.

values smaller than this we also see that the percentage of total energy contained within the
liquid jet is roughly equal over the range of compression ratios considered. This is due to
the strong influence of the boundary over the motion as noted earlier. This may also be seen
if we consider the circulations formed following jet impact in Figure 15, where we note the
circulations are roughly equal over the range of α = 100–1000 up to γ ≈ 1·75.

Finally we consider the Kelvin impulse within the liquid jet. This is shown in Figure 16
as a percentage of the instantaneous Kelvin impulse of the bubble. Upto γ ≈ 1·5, these
percentages are roughly equal for α = 100 and α = 1000. As γ increases beyond this value,
we see that over 50% of the Kelvin impulse (a measure of the fluid momentum) is contained
within the liquid jet. For bubbles at a large distance from the boundary, this starts to decrease
as the influence of the boundary decreases.

One recent experimental study which employs a number of novel visualisation techniques
is that of [18] and which provides a helpful comparison to our computational studies. Of
particular interest are a number of experimental photograph series which are viewed at an
elevated angle of 45◦ above the boundary. This permits the examination of radial instabilit-
ies which may form during the unstable collapse phase. Further these photograph series are
captured using an ultra-high speed camera capable of upto 100 million frames per second
allowing detailed study of the toroidal phase of motion which occurs on comparatively short
time-scales. Figure 17 shows calculations for the motion of a laser-induced cavitation bubble
characterised by the parameters α = 600, γ = 0·8 and κ = 1·4. In Figure 17 we follow
the motion from initial bubble formation upto maximum volume (Frames 1–3) then through
to liquid jet impact (Frame 7). Although less obvious than in results viewed in profile, we
note that during the expansion phase, the underside of the bubble is flattened against the rigid
boundary. Following jet impact, a toroidal bubble geometry is formed (Frame 8) and a liquid
splash thrown up inside the bubble. The motion of this splash may be followed as it is driven
towards the outer edge of the bubble and is visible as the lighter coloured ring at the base
of the bubble in Frames 9–15. Calculations cease when this splash meets the outer edge of
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Figure 17. Rendered transparent bubble shapes showing the motion of a cavitation bubble near a rigid boundary
for the parameters α = 600, γ = 0·8 and κ = 1·4. The square portion of the rigid boundary shown is 2Rm × 2Rm
and angle of elevation is 45◦. Times are 0·0000, 0·1505, 1·1082 (maximum volume), 1·8952, 2·0724, 2·1213,
2·1654 (jet impact), 2·1654, 2·2016, 2·2100, 2·2195, 2·2298, 2·2408, 2·2518 and 2·2615, respectively.

the bubble. High-speed experimental photographs for this case are reproduced in Figure 18,
wherein jet impact is visible around Frame 4–5. We note the liquid splash is clearly visible as a
darkened ring at the base of the bubble in the third row of images in this figure. It is somewhat
unclear as to how the splash develops as it reaches the outer edge of the bubble, though it is
likely surface-tension effects act to prevent this becoming so large as to meet the outer surface
of the bubble as in our calculations. In the final three rows of experimental images, the bubble
reaches minimum volume as a narrow toroidal ring, following which it begins to re-expand.
We note surface instabilities around the bubble are clearly visible at this stage.
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Figure 18. The final stages of collapse and rebound of a laser-generated cavitation bubble near a rigid boundary
characterised by α = 600, γ = 0·8, δ = 0·0 and κ = 1·4. Motion is viewed from an angle of 45◦ above the rigid
boundary. Reproduced with permission from [18].

7. Concluding remarks

In this paper, we have outlined a boundary-integral scheme for the calculation of both the
pre-toroidal and toroidal phases of motion of a single bubble near to a rigid boundary. Using
non-standard smoothing techniques and a fourth-order time integration scheme, numerical
energy losses have been reduced, resulting in more accurate calculations. Further physical
insight into a range of problems has been gained through the calculation of physical quantities
associated with the bubble and surrounding fluid. Several of these, most notably the Kelvin
impulse and kinetic energy associated with the liquid jet, have not previously been examined
and provide new information about the highly non-spherical aspects of the motion in close
proximity to the rigid boundary. Recent visualisation techniques [18] have provided interior
details on bubble shape in agreement with calculations. This is in contrast to earlier experi-
ments wherein motion is generally recorded in profile, requiring us to infer interior behaviour.
This is an important validation of the reliability of the current code in calculating the violent
behaviour of collapsing cavitation bubbles, especially those involving high-speed liquid jets.
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